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A truncating mutation in EPOR leads to hypo-
responsiveness to erythropoietin with normal
haemoglobin
Gudjon R. Oskarsson1, Ragnar P. Kristjansson1, Amy L. Lee1, Gardar Sveinbjornsson1, Magnus K. Magnusson1,2,

Erna V. Ivarsdottir 1,3, Stefania Benonisdottir1, Asmundur Oddsson 1, Olafur B. Davidsson1,

Jona Saemundsdottir1, Gisli H. Halldorsson 1, Joseph Arthur1, Gudny A. Arnadottir 1, Gisli Masson1,

Brynjar O. Jensson1, Hilma Holm1, Isleifur Olafsson4, Pall T. Onundarson5, Daniel F. Gudbjartsson 1,3,

Gudmundur L. Norddahl1, Unnur Thorsteinsdottir1,2, Patrick Sulem 1 & Kari Stefansson1,2

The cytokine erythropoietin (EPO), signalling through the EPO receptor (EPO-R), is essential

for the formation of red blood cells. We performed a genome-wide association study

(GWAS) testing 32.5 million sequence variants for association with serum EPO levels in a set

of 4187 individuals. We detect an association between a rare and well imputed stop-gained

variant rs370865377[A] (p.Gln82Ter) in EPOR, carried by 1 in 550 Icelanders, and increased

serum EPO levels (MAF= 0.09%, Effect= 1.47 SD, P= 3.3 × 10−7). We validated these

findings by measuring serum EPO levels in 34 additional pairs of carriers and matched

controls and found carriers to have 3.23-fold higher EPO levels than controls (P= 1.7 × 10−6;

Pcombined= 1.6 × 10−11). In contrast to previously reported EPOR mutations, p.Gln82Ter does

not associate with haemoglobin levels (Effect=−0.045 SD, P= 0.32, N= 273,160), prob-

ably due to a compensatory EPO upregulation in response to EPO-R hypo-responsiveness.
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Erythropoietin (EPO) is a cytokine produced and released by
the kidney in response to hypoxia1. EPO is the primary
regulator of erythropoiesis2, and exerts its function through

the homodimeric EPO receptor (EPO-R). EPO-R is primarily
expressed on the surface of erythroid progenitors in bone mar-
row, but also in a wide variety of tissues including the central
nervous system3–5. EPO signalling is vital for differentiation,
proliferation and survival of erythroid progenitors. EPO-R and
EPO homozygous knockout mice die from severe anaemia
between embryonic days 13 and 154, 6. Serum EPO levels are
regulated via negative feedback loop including an oxygen-
sensitive mechanism7–10.

Analysis of serum EPO levels is performed in two main clinical
contexts; firstly to distinguish between primary and secondary
polycythaemias and, secondly, to assess the need for recombinant
human EPO (r-HuEPO) replacement therapy, primarily in cases
of chronic kidney disease (CKD)11–13. C-terminal truncating
mutations in EPOR leading to a gain of function have previously
been reported to cause autosomal dominant primary ery-
throcytosis, with decreased EPO levels and elevated serum hae-
moglobin concentration as the main features14–16.

A recent genome-wide association study (GWAS) of 6777
healthy subjects in the Netherlands yielded an association
between a common single-nucleotide polymorphism (SNP),
rs7776054, and serum EPO levels17. The variant is located
between HBS1L and MYB, a region containing many common
SNPs with associations with haemotological traits18–26.

To search for novel associations of sequence variants with EPO
levels, we performed a GWAS on Icelanders with serum EPO
measurements.

Results
GWAS study design. The GWAS discovery phase was performed
on 4187 individuals (2% of the Icelandic population) with at least
one available EPO measurement (mean number of measure-
ments= 1.4) (Supplementary Table 1). In the GWAS discovery
phase, the EPO measurements used were those deemed necessary
and performed in a clinical setting at the University Hospital of
Iceland between 1994 and 2015. Median value for EPO levels was
13.3 IU L−1 (Q1, Q3 quartiles; 8.4 IU L−1, 22.7 IU L−1). The most
common diagnoses observed for this group are presented in
Supplementary Table 2. We tested for association between EPO
levels and 32.5 million sequence variants (imputation quality
(info) > 0.8, minor allele frequency (MAF) > 0.01%) identified

through whole-genome sequencing (WGS) of 15,220 Icelanders
(~5% of the population) and subsequently imputed into 151,677
chip-typed individuals (~50% of the population of 320,000), as
well as 282,894 first- and second-degree relatives of the chip-
typed27. Of the 4187 individuals with EPO measured, 2994 were
chip-typed and 1193 were first or second-degree relatives of the
chip-typed (Supplementary Fig. 1). Correlation between genotype
and EPO levels was calculated after inverse normal transforma-
tion of EPO levels. When testing for association, we used a pre-
viously described methodology for weighting genome-wide
significance thresholds depending on sequence variant
annotation28. The significance threshold for loss of function is
2.6 × 10−7, for moderate impact is 5.1 × 10−8, for low impact is
4.6 × 10−9 and is 7.9 × 10−10 for all other variants. A flowchart of
the study design is presented in Fig. 1.

GWAS discovery phase. The most significant association is with
a rare stop-gained variant rs370865377[A] (MAF= 0.09%, p.
Gln82Ter, imputation info= 1.00) in EPOR that associates with
increased serum EPO levels (Effect= 1.47 SD, P value= 3.3 × 10
−7) (Table 1, Fig. 2). We detect no other variants, common or
rare, associating significantly with EPO levels. The association of
p.Gln82Ter borders on genome-wide significance and the variant
is in a biologically relevant gene, the one encoding the EPO
receptor (corrected P value= 0.064, genome-wide significance
threshold for loss-of-function (LOF) mutations= 2.6 × 10−7). We
do not detect other LOF variants in EPOR in our WGS set of
15,220 individuals. Similarly, no quality LOF variants of higher
frequency than ours are reported in gnomAD. p.Gln82Ter is
located in exon 2 out of 8 exons in EPOR. Among the 15,220
whole-genome sequenced individuals are 30 carriers of p.
Gln82Ter and imputation of their genotypes into 151,677 chip-
typed individuals led to identification of a total of 268 carriers of
the mutation. Among those were 7 carriers with serum EPO
measurements. The mutation is carried by 1 in 550 Icelanders,
whereas it is only detected 6 times in 138,233 genomes reported
in gnomAD (MAF= 0.002%, roughly 40× rarer than in
Iceland)29. The variant is neither present in the HRC (Haplotype
Reference Consortium) panel nor the 1000Genomes panel;
detecting association to such a rare variant is therefore not
achievable using a foreign reference panel.

Replication phase. In order to validate the association between
serum EPO levels and p.Gln82Ter, we attempted a replication

GWAS discovery

EPO measured in available serum of
34 EPOR:pGln82Ter carriers out of 268 imputed and matched non-carriers

Genotype-based replication

15,220 WGS individuals
learning set

Imputation

151,677 chip-typed and
282,894 close relatives

32.5 million sequence variants

4187 individuals
hospital-based EPO measurement

EPOR:pGln82Ter

Combined
Genome-wide significant

Fig. 1 Flowchart depicting the study design. rs370865377[A] (p.Gln82Ter) is the top marker based on corrected P value (PCorrected= 0.064).
Its significance was P= 3.3 × 10−7 in the GWAS discovery phase. In the replication phase P= 1.7 × 10−6 and the combined P= 1.6 × 10−11.
WGS whole-genome sequenced
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where we independently measured serum EPO levels in all
imputed p.Gln82Ter carriers with available serum sample, as well
as in matched controls (N= 34 pairs) using enzyme-linked
immunosorbent assay (ELISA; Human Erythropoietin Quanti-
kine IVD ELISA kit #DP00; R&D Systems) (Supplementary
Table 1). The individuals used in the replication phase were
drawn from the overall genotypic dataset as in the GWAS dis-
covery phase, although the individuals in the replication phase
had not previously had serum EPO levels measured at the hos-
pital and therefore did not overlap with the individuals used in
the EPO GWAS discovery phase. Without knowledge of imputed
carriers, a random set of 19,000 Icelanders would have been
required in order to identify the same number of carriers (n= 34)
of p.Gln82Ter. We matched carriers and non-carriers in the
replication phase on sex, year of birth, and year of serum sample
collection (within 1 year). To estimate the significance of the
difference between the two matched groups, we used a Wilcoxon
signed-rank test and the average measured EPO value (measured
in triplicate). EPO levels were higher in p.Gln82Ter carriers than
the matched non-carriers (P= 1.71 × 10−6, based on Wilcoxon

signed-rank test) (Methods, Fig. 3, Supplementary Fig. 2). The
median serum EPO levels were 3.23-fold higher in carriers
than in the matched non-carriers (mediancarriers= 22.1 IU L−1,
mediannon-carriers= 6.8 IU L−1; Supplementary Table 1). The size
of the effect detected in the replication phase is expected to
represent the effect of the mutation better than the effect detected
in the GWAS discovery phase. The association of p.Gln82Ter and
EPO levels in the combined GWAS discovery and replication
studies reached genome-wide significance (P= 1.64 × 10−11,
based on Fisher’s combined probability test)30.

Transcriptional and translational impact of p.Gln82Ter. The
stop-gained mutation at position 82 of EPO-R is predicted to lead
to loss of protein function by either nonsense-mediated decay of
the mutated messenger RNA (mRNA) or by protein truncation
with a resultant fragment consisting of only 81 N-terminal amino
acids lacking important functional domains, including the
transmembrane domain (Fig. 4)3. RNA-sequencing (RNA-seq) of
whole blood of 2502 individuals demonstrated similar levels of

Table 1 EPOR sequence variant rs370865377 associating with elevated serum EPO levels in Iceland

GWAS (N= 4187) Replication (N= 34
matched pairs)

Combined

Gene Chr Pos (hg38) rs name MAF (%) HGVS Allele (min/maj) Infoa P valueb Effect (SD) P valuec P valued

EPOR 19 11,383,104 rs370865377 0.09 p.
Gln82Ter

A/G 1.00 3.3 × 10
−7

1.47 (0.91, 2.03) 1.7 × 10−6 1.6 × 10−11

Results from the initial and replication experiments are presented, along with their combined P value. The effect for the initial experiment is 1.47 SD per allele. The carriers in the replication experiment
had median EPO levels 3.23-fold higher than their matched controls
MAF minor allele frequency, CI confidence interval
a Imputation quality score (Info)
b Chi-square test
c Wilcoxon signed-rank test
d Fisher’s combined probability test
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Fig. 2 Associations of sequence variants with serum EPO levels at the EPOR locus. The mutation p.Gln82Ter in EPOR is labelled as a purple diamond, other
variants are coloured according to correlation (r2) with that marker (legend at top-left). –log10P values are shown along the left y-axis and correspond to
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EPORmRNA in carriers and non-carriers (P= 0.48, Effect= 0.30
SD), and allele-specific EPOR expression in p.Gln82Ter carriers
demonstrated similar mRNA levels of the mutated and wild-type
alleles (P= 0.46) (6 carriers and 2496 non-carriers; Supplemen-
tary Figs. 3 and 4). None of the six carriers used in the RNA
analysis had EPO measured in the GWAS discovery phase, but
one of them was part of the replication phase.

Phenome analysis. We tested p.Gln82Ter for association with
serum haemoglobin levels in a large set of individuals with hae-
moglobin measurements (N= 273,160, corresponding to 85% of
the Icelandic population, geometric mean number of measure-
ments= 1.2). With this sample size, we had 80% power to detect
an absolute effect of 0.127 SD (corresponding to 2.03 g L−1 or
1.5% of mean) for p.Gln82Ter on haemoglobin levels (Supple-
mentary Fig. 5), but did not detect any association (P= 0.32,
Effect=−0.044 SD, 95% confidence interval (CI)=−0.13, 0.04)
(Table 2). This is in contrast to individuals carrying other
reported EPOR mutations that associate with decreased EPO
levels and elevated haemoglobin levels14–16, 31–33. Accordingly,
we did not observe association between p.Gln82Ter and stroke,
myocardial infarction or venous thromboembolism, phenotypes
commonly associated with either elevated haemoglobin in ery-
throcytosis or adverse effect of r-HuEPO therapy, although we
have limited power to detect modest effects due to the low variant
frequency (Supplementary Table 3). Furthermore, we did not see
any association with lifespan after 50 years of age (P= 0.28,
Effect=−0.088 SD).

We replicated the reported association between the common
HBS1L-MYB intergenic variant rs7776054[A] and increased
serum EPO levels (Supplementary Table 4).

Discussion
We discovered a rare stop-gained mutation, p.Gln82Ter in EPO-
R, present in one out of 550 Icelanders, associating with a
threefold increase in EPO levels without an effect on haemoglobin
levels.

p.Gln82Ter terminates the EPO-R protein at amino acid 82 out
of the 508 amino acid full-length protein, eliminating the intra-
cellular and transmembrane domains3. An expected effect would
be a reduction in the number of EPO receptors present at the cell
surface, leading to EPO-R hypo-responsiveness to EPO. The
elevation of EPO seen in carriers of p.Gln82Ter in Iceland is likely
a compensation for this hypo-responsiveness which would cause
anaemia given normal EPO levels. In contrast, truncating muta-
tions removing only parts of the intracellular EPO-R C-terminus
that bind negative regulators have been reported to associate with
primary erythrocytosis, with low EPO and high haemoglobin
levels (Fig. 4, Supplementary Table 5)14–16, 32–39. These muta-
tions make EPO-R hyper-responsive to EPO with a secondary
effect of increasing haemoglobin levels, which can be advanta-
geous for athletic performance16. These two mutations in EPO-R,
the gain of function with increased haematocrit and low levels of
EPO and the loss of function with normal haematocrit and high
levels of EPO, demonstrate that the feedback mechanisms in the
generation of red blood cells appear to be more sensitive to the
need to provide sufficient oxygen carrying capacity than they are
to the deleterious effects of high haematocrit.

r-HuEPO is used in the treatment of anaemia in CKD and
malignancies40, 41. If requiring treatment, carriers of p.Gln82Ter
may require higher levels of r-HuEPO. The administration of
higher r-HuEPO has been found to increase mortality in CKD42,
but an understanding of what will happen to p.Gln82Ter carriers
compared to non-carriers requires further examination.

Methods
Study subjects. Erythropoietin measurements of 4187 Icelanders were obtained
from The National University Hospital of Iceland from 1994 to 2015. Of these,
2994 were chip-typed using Illumina chips and their genotypes were imputed using
long-range phased haplotypes. Genotype probabilities were computed for 1,193
individuals with chip-typed first or second-degree relatives (Fig. 1).

All participating individuals who donated blood, or their guardians, provided
written informed consent. The family history of participants donating blood was
incorporated into the study by including the phenotypes of first- and second-
degree relatives and integrating over their possible genotypes.

All sample identifiers were encrypted in accordance with the regulations of the
Icelandic Data Protection Authority. Approval for the study was provided by the
National Bioethics Committee (ref: VSNb2015010033-03.12).

Whole-genome sequencing and Illumina chip genotyping. Genotypes for indi-
viduals in both the GWAS discovery and replication phases were obtained from a
large set created by whole-genome sequencing 15,220 Icelanders participating in
various disease projects at deCODE genetics, sequenced to an average genome-
wide coverage of 34×. Sequencing was performed using the following three dif-
ferent library preparation methods and sequencing instruments from Illumina: (i)
the standard TruSeq DNA library preparation method; Illumina GAIIx and/or
HiSeq 2000 sequencers; (ii) the TruSeq DNA PCR-free library preparation method;
Illumina HiSeq 2500 sequencers; and (iii) the TruSeq Nano DNA library pre-
paration method; Illumina HiSeq X sequencers. SNPs and indels in the whole-
genome sequencing data were identified using the Genome Analysis Toolkit
(GATK) HaplotypeCaller, subject to filters based on GATK best practices43.
Genotype calls were improved by using information about haplotype sharing,
taking advantage of the fact that all the sequenced individuals had also been chip-
typed and long-range phased. The effects of sequence variants on protein-coding
genes were annotated using the Variant Effect Predictor (VEP) using protein-
coding transcripts from RefSeq. In addition, these variants have been imputed into
151,677 Icelanders (around 50% of the population) who have been genotyped using
Illumina SNP chips (Supplementary Table 6). Of imputed variants with a MAF
over 0.1%, 96.7% were imputed with information over 0.8, and only variants with
imputation information over 0.8 were tested in the current study. Genotype
probabilities for untyped relatives of chip-typed individuals was also calculated
based on Icelandic genealogy (Fig. 1). The process used for whole-genome
sequence sequencing of Icelanders, and the subsequent imputation from which the

2.71

7.4

20.1

54.6

148.4

E
P

O
 (

IU
/L

)

Matched non-carriers Matched carriers

Fig. 3 Serum EPO concentration of 34 carriers of rs370865377[A] and
34 non-carriers matched by sex, sample collection date, and age at
sampling date. Measurements were performed by ELISA. The bottom and
top of each box represent the first and third quartiles, the line inside the
box is the median and whiskers represent the ±1.5 times the interquartile
range. EPO serum levels are plotted on the log-scaled y-axis. The
median value of serum EPO concentration of carriers was 3.23-fold higher
(median= 22.1 IU L−1; Q1= 14.1; Q3= 30.0) than that of non-carriers
(median= 6.8 IU L−1; Q1= 5.4; Q3= 9.0) (P= 1.7 × 10−6)
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data for this analysis were generated, has been extensively described in recent
publications44, 45.

Association analysis. We tested 32,554,515 variants (with imputation informa-
tion > 0.8 and MAF > 0.01%) identified from the whole-genome sequencing of
15,220 Icelanders (5% of the population) for association with EPO serum levels45.

Serum EPO measurements were corrected for sex and year of birth. The data
were inverse normal transformed to have a standard normal distribution.
Generalised linear regression models were used to test for associations between
sequence variants and quantitative traits, assuming an additive genetic model. Let y
be the vector of quantitative measurements, and let g be the vector of expected
allele counts for the SNP being tested. We assume the quantitative measurements
follow a normal distribution with a mean that depends linearly on the expected

allele at the variant and a variance covariance matrix proportional to the kinship
matrix:

y � N αþ βg; 2σ2Φ
� �

;

where

Φij ¼
1
2 ; i ¼ j

2kij; i≠j

(

is the kinship matrix as estimated from the Icelandic genealogical database.
Logistic regression was used to test for association between sequence variants and
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Fig. 4 Schematic diagram of the EPO-R protein product (NP_000112.1) depicting relative location of the N-terminal p.Gln82Ter and reported C-terminal
truncating mutations. Y454 and Y456 show strongest affinity to negative regulatory agents and are lost in the reported C-terminal truncating
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Table 2 Association of rs370865377[A] with quantitative phenotypes relevant to blood homoeostasis

Phenotype N measures P value Effect (SD) 95% CI

Haematocrit 268,689 0.12 −0.068 −0.15, 0.02
Haemoglobin 273,160 0.32 −0.045 −0.13, 0.04
Mean corpuscular volume (MCV) 272,740 0.13 0.080 −0.02, 0.18
RBC count 270,858 0.0093 −0.12 −0.21, −0.03
Platelets 268,587 0.19 0.067 −0.03, 0.17
WBC 273,110 0.95 −0.0030 −0.10, 0.09
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binary traits. Other available individual characteristics that correlate with disease
status were also included in the model as nuisance variables. These characteristics
were: sex, county of birth, current age or age at death (first- and second-order
terms included), blood sample availability for the individual and an
indicator function for the overlap of the lifetime of the individual with the
timespan of phenotype collection. Testing was performed using the likelihood ratio
statistic.

We used linkage disequilibrium (LD) score regression to account for
distribution inflation in the dataset due to cryptic relatedness and population
stratification46. Using a set of about 1.1 million sequence variants with available LD
score, we regressed the χ2 statistics from our GWAS scan against LD score and
used the intercept as correction factor. The correction factor for serum EPO level
was estimated to be 0.98. Since we observed a slight distribution deflation (0.98) we
did not use the correction factor to increase significance.

In the replication study, the data were not normally distributed and thus we
performed Wilcoxon signed-rank test to estimate significance. We also performed
paired Student's T test for log-transformed serum EPO values (P= 4.9 × 10−8),
yielding similar results as the Wilcoxon signed-rank test.

Significance thresholds. We applied genome-wide significance thresholds
corrected for multiple testing using adjusted Bonferroni procedure weighted for
variant classes and predicted functional impact. With 32,463,443 sequence variants
being tested, the weights given in Sveinbjornsson et al.28 were rescaled to control
the family-wise error rate. The adjusted significance thresholds are 2.6 × 10−7

for variants with high impact (N= 8464), 5.1 × 10−8 for variants with moderate
impact (N= 149,983), 4.6 × 10−9 for low-impact variants (N= 2,283,889),
2.3 × 10−9 for other variants in Dnase I hypersensitivity sites (N= 3,913,058)
and 7.9 × 10−10 for all other variants (N= 26,108,038).

RNA-sequencing analysis. In total, whole blood from 2502 individuals were
RNA-sequenced. The preparation of poly(A)+cDNA sequencing libraries and
RNA-seq were carried out as described before47. Majority of the samples (N=
2074) were sequenced with read length 2 × 125, and in some instances read lengths
2 × 101 (N= 220) or 2 × 76 (N= 208). Reads were aligned to GRCh38 using
TopHat version 2.0.12 with a supplied set of known transcripts in GTF format
(RefSeq hg38)48.

RNA libraries were excluded if the number of mapped reads were less than 107

or number of mapped read pairs were less than 106 or if the mapping rate of the
first or second read-end fell below 80% relative to the mapping of the other read-
end. Genotype concordance was determined by comparing imputed genotypes to
those derived from RNA-seq. Samples surpassing exclusion had median 106
million mapped reads (90–123M (Q1–Q3)).

HTSeq-count was used to count fragments aligning to genes49. Count values
were normalised with the Trimmed Mean of M-values method implemented
within edgeR (v. 3.12.1) of the Bioconductor package50. Generalised linear
regression assuming additive genetic effect as described before44 was performed on
rank-transformed RNA expression estimates from whole blood (N= 2502). We
also included in the model, as nuisance variables, the following RNA-seq metrics:
average fragment length, exonic rate, number of genes detected in sample
preparation method and read length.

Phenotypes. EPO, discovery phase: We received the values of 5887 serum EPO
level measurements of 4187 individuals from The National University Hospital of
Iceland. The hospital laboratory estimated the EPO serum level with solid phase
enzyme-labelled chemiluminiscent immunoassay using Immulite 1000 (Siemens
Healthcare Diagnostics).

EPO, replication phase (human erythropoietin immunoassay): Serum EPO
concentration was measured by double-antibody sandwich ELISA (Human
Erythropoietin Quantikine IVD ELISA kit #DP00; R&D Systems). The
manufacturer’s protocol was followed according to instructions. Undiluted serum
samples from 34 age-matched carrier and control pairs were applied in triplicate.
The Shaker Method was used with 1 h of incubation periods followed by a total of 4
washes. Development in substrate solution was 25 min. Results were analysed
using GloMax Discover System (Promega). The reported range for this assay is 2.5
200 mIUml−1.

Haemoglobin: Haemoglobin concentration measurements of 273,160 Icelanders
were obtained from four different laboratories in Iceland from 1993 to 2016. Of
these, 137,064 were chip-typed using Illumina chips and their genotypes were
imputed using long-range phased haplotypes. Genotype probabilities were
computed for 136,096 individuals with chip-typed first- or second-degree relatives.
Haemoglobin concentration measurements for each sex and the four different
laboratories were separately transformed to a standard normal distribution and
adjusted for age using a generalised additive model51.

Code availability. We used publicly available software (URLs listed below) in
conjunction with the above described algorithms in the sequencing processing
pipeline (whole-genome sequencing, association testing, RNA-seq mapping and
analysis): BWA 0.7.10 mem, https://github.com/lh3/bwa; GenomeAnalysisTKLite
2.3.9, https://github.com/broadgsa/gatk/; Picard tools 1.117, https://broadinstitute.

github.io/picard/; SAMtools 1.3, http://samtools.github.io/; Bedtools v2.25.0-76-
g5e7c696z, https://github.com/arq5x/bedtools2/; Variant Effect Predictor https://
github.com/Ensembl/ensembl-vep. Variants were imputed based on the IMPUTE
HMM model. We used R extensively to analyse data and create plots.

Data availability. Sequence variants passing GATK filters have been deposited in
the European Variation Archive, accession number PRJEB15197. RNA-seq data
have been deposited in the Gene Expression Omnibus, accession number
GSE102870.
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