• Risk of Soft-Tissue Sarcoma Among 69 460 Five-Year Survivors of Childhood Cancer in Europe.

      Bright, Chloe J; Hawkins, Mike M; Winter, David L; Alessi, Daniela; Allodji, Rodrigue S; Bagnasco, Francesca; Bárdi, Edit; Bautz, Andrea; Byrne, Julianne; Feijen, Elizabeth A M; et al. (Oxford University Press, 2018-06-01)
      Childhood cancer survivors are at risk of subsequent primary soft-tissue sarcomas (STS), but the risks of specific STS histological subtypes are unknown. We quantified the risk of STS histological subtypes after specific types of childhood cancer. We pooled data from 13 European cohorts, yielding a cohort of 69 460 five-year survivors of childhood cancer. Standardized incidence ratios (SIRs) and absolute excess risks (AERs) were calculated. Overall, 301 STS developed compared with 19 expected (SIR = 15.7, 95% confidence interval [CI] = 14.0 to 17.6). The highest standardized incidence ratios were for malignant peripheral nerve sheath tumors (MPNST; SIR = 40.6, 95% CI = 29.6 to 54.3), leiomyosarcomas (SIR = 29.9, 95% CI = 23.7 to 37.2), and fibromatous neoplasms (SIR = 12.3, 95% CI = 9.3 to 16.0). SIRs for MPNST were highest following central nervous system tumors (SIR = 80.5, 95% CI = 48.4 to 125.7), Hodgkin lymphoma (SIR = 81.3, 95% CI = 35.1 to 160.1), and Wilms tumor (SIR = 76.0, 95% CI = 27.9 to 165.4). Standardized incidence ratios for leiomyosarcoma were highest following retinoblastoma (SIR = 342.9, 95% CI = 245.0 to 466.9) and Wilms tumor (SIR = 74.2, 95% CI = 37.1 to 132.8). AERs for all STS subtypes were generally low at all years from diagnosis (AER < 1 per 10 000 person-years), except for leiomyosarcoma following retinoblastoma, for which the AER reached 52.7 (95% CI = 20.0 to 85.5) per 10 000 person-years among patients who had survived at least 45 years from diagnosis of retinoblastoma. For the first time, we provide risk estimates of specific STS subtypes following childhood cancers and give evidence that risks of MPNSTs, leiomyosarcomas, and fibromatous neoplasms are particularly increased. While the multiplicative excess risks relative to the general population are substantial, the absolute excess risk of developing any STS subtype is low, except for leiomyosarcoma after retinoblastoma. These results are likely to be informative for both survivors and health care providers.
    • Risk of Subsequent Bone Cancers Among 69 460 Five-Year Survivors of Childhood and Adolescent Cancer in Europe

      Fidler, Miranda M.; Reulen, Raoul C.; Winter, David L.; Allodji, Rodrigue S.; Bagnasco, Francesca; Bárdi, Edit; Bautz, Andrea; Bright, Chloe J.; Byrne, Julianne; Feijen, Elizabeth A. M.; et al. (Oxford University Press, 2018-02)
      INTRODUCTION: We investigate the risks of subsequent primary bone cancers after childhood and adolescent cancer in 12 European countries. For the first time, we satisfactorily address the risks beyond 40 years from diagnosis and beyond 40 years of age among all survivors. METHODS: This largest-ever assembled cohort comprises 69 460 five-year survivors of cancer diagnosed before age 20 years. Standardized incidence ratios, absolute excess risks, and multivariable-adjusted relative risks and relative excess risks were calculated. All statistical tests were two-sided. RESULTS: Overall, survivors were 21.65 times (95% confidence interval = 18.97 to 24.60 times) more likely to be diagnosed with a subsequent primary bone cancer than expected from the general population. The greatest excess numbers of bone cancers were observed after retinoblastoma, bone sarcoma, and soft tissue sarcoma. The excess number of bone cancers declined linearly with both years since diagnosis and attained age (all P < .05). Beyond 40 years from diagnosis and age 40 years, there were at most 0.45 excess bone cancers among all survivors per 10 000 person-years at risk; beyond 30 years from diagnosis and age 30 years, there were at most 5.02 excess bone cancers after each of retinoblastoma, bone sarcoma, and soft tissue sarcoma, per 10 000 person-years at risk. CONCLUSIONS: For all survivors combined and the cancer groups with the greatest excess number of bone cancers, the excess numbers observed declined with both age and years from diagnosis. These results provide novel, reliable, and unbiased information about risks and risk factors among long-term survivors of childhood and adolescent cancer.
    • Risk of subsequent primary leukaemias among 69,460 five-year survivors of childhood cancer diagnosed from 1940 to 2008 in Europe: A cohort study within PanCareSurFup.

      Allodji, Rodrigue S; Hawkins, Mike M; Bright, Chloe J; Fidler-Benaoudia, Miranda M; Winter, David L; Alessi, Daniela; Fresneau, Brice; Journy, Neige; Morsellino, Vera; Bárdi, Edit; et al. (Elsevier Science, 2019-08)
      BACKGROUND: Survivors of childhood cancers are at risk of developing subsequent primary leukaemias (SPLs), but the long-term risks beyond 20 years of treatment are still unclear. We investigated the risk of SPLs in five-year childhood cancer survivors using a large-scale pan-European (PanCareSurFup) cohort and evaluated variations in the risk by cancer and demographic factors. METHODS: This largest-ever assembled cohort comprises 69,460 five-year childhood cancer survivors from 12 European countries. Standardised incidence ratios (SIRs) and absolute excess risks (AERs) were calculated. RESULTS: One hundred fifteen survivors developed an SPL including 86 myeloid leukaemias (subsequent primary myeloid leukaemias [SPMLs]), 17 lymphoid leukaemias and 12 other types of leukaemias; of these SPLs, 31 (27%) occurred beyond 20 years from the first childhood cancer diagnosis. Compared with the general population, childhood cancer survivors had a fourfold increased risk (SIR = 3.7, 95% confidence interval [CI]: 3.1 to 4.5) of developing leukaemia, and eight leukaemias per 100,000 person-years (AER = 7.5, 95% CI: 6.0 to 9.2) occurred in excess of that expected. The risks remained significantly elevated beyond 20 years from the first primary malignancy (SIR = 2.4, 95% CI: 1.6 to 3.4). Overall, the risk ratio for SPML (SIR = 5.8, 95% CI: 4.6 to 7.1) was higher than that for other SPLs. CONCLUSIONS: We demonstrate that beyond 20 years after childhood cancer diagnosis, survivors experience an increased risk for SPLs compared with that expected from the general population. Our findings highlight the need for awareness by survivors and their healthcare providers for potential risk related to SPL.