Show simple item record

dc.contributor.authorJansook, Phatsawee
dc.contributor.authorRitthidej, Garnpimol C
dc.contributor.authorUeda, Haruhisa
dc.contributor.authorStefansson, Einar
dc.contributor.authorLoftsson, Thorsteinn
dc.date.accessioned2010-12-13T09:33:28Z
dc.date.available2010-12-13T09:33:28Z
dc.date.issued2010
dc.date.submitted2010-12-13
dc.identifier.citationJ Pharm Pharm Sci. 2010, 13(3):336-50en
dc.identifier.issn1482-1826
dc.identifier.pmid21092707
dc.identifier.urihttp://hdl.handle.net/2336/117725
dc.descriptionTo access publisher full text version of this article. Please click on the hyperlink in Additional Links fielden
dc.description.abstractPURPOSE: Study the complexation of dexamethasone in combinations of γ-cyclodextrin (γCD) and 2-hydroxypropyl-γ-cyclodextrin (HPγCD) with emphasis on solid characterization and development of aqueous dexamethasone eye drop suspension for drug delivery through sclera. METHODS: Dexamethasone/cyclodextrin (dexamethasone/CD) solid complex systems were prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and by in vitro drug dissolution testing. Sample eye drop suspensions were prepared applying solubilizer/suspender consisting of γCD/HPγCD mixtures, poloxamer 407 (P407) and polyvinylpyrrolidone. The eye drop suspension was characterized by its physicochemical properties. RESULTS: The solid characterization techniques applied suggested that solid complexes were being formed. The results indicated that dexamethasone formed non-inclusion or micelle-like aggregates with HPγCD and the γCD/HPγCD mixture. The dissolution and dexamethasone release from the solid dexamethasone/γCD/HPγCD complexes was much faster than from the solid dexamethasone/γCD and dexamethasone/HPγCD complexes. The diameter of the solid particles in the dexamethasone eye drop suspension formulations were in all cases less than 10 μm with a mean diameter from 2.5 to 5.8 μm. The particle size decreased with increasing amount of P407. Permeation studies through semipermeable membrane and porcine sclera showed that increasing the amount HPγCD could enhance drug transport through the membrane barriers and this was related to enhanced drug solubility. The permeation rates were, however, decreased compared to formulation containing γCD alone due to larger hydrodynamic diameter of dexamethasone/γCD/HPγCD complex aggregates. All formulations were both chemically stable for at least 8 months at 25°C and 40°C. CONCLUSIONS: Combination of γCD and HPγCD, i.e., formation of dexamethasone/γCD/HPγCD complexes, resulted in synergistic effect. That is the mixture had greater solubilizing effect than the individual CD, resulted in enhanced dissolution and drug delivery through membranes. Furthermore, it is possible to control the drug release rate by adjusting the γCD:HPγCD ratio in the solid dexamethasone/γCD/HPγCD complexes.
dc.language.isoenen
dc.publisherThe Societyen
dc.relation.urlhttp://ejournals.library.ualberta.ca/index.php/JPPS/article/view/7307/7313en
dc.subject.meshPubMed in processen
dc.titleyCD/HPyCD mixtures as solubilizer: solid-state characterization and sample dexamethasone eye drop suspension.en
dc.typeArticleen
dc.contributor.departmentFaculty of Pharmaceutical Sciences, University of Iceland, Hofsvallagata 53, IS-107 Reykjavik, Iceland.en
dc.identifier.journalJournal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Société canadienne des sciences pharmaceutiquesen
html.description.abstractPURPOSE: Study the complexation of dexamethasone in combinations of γ-cyclodextrin (γCD) and 2-hydroxypropyl-γ-cyclodextrin (HPγCD) with emphasis on solid characterization and development of aqueous dexamethasone eye drop suspension for drug delivery through sclera. METHODS: Dexamethasone/cyclodextrin (dexamethasone/CD) solid complex systems were prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), X-ray diffractometry (XRD), and by in vitro drug dissolution testing. Sample eye drop suspensions were prepared applying solubilizer/suspender consisting of γCD/HPγCD mixtures, poloxamer 407 (P407) and polyvinylpyrrolidone. The eye drop suspension was characterized by its physicochemical properties. RESULTS: The solid characterization techniques applied suggested that solid complexes were being formed. The results indicated that dexamethasone formed non-inclusion or micelle-like aggregates with HPγCD and the γCD/HPγCD mixture. The dissolution and dexamethasone release from the solid dexamethasone/γCD/HPγCD complexes was much faster than from the solid dexamethasone/γCD and dexamethasone/HPγCD complexes. The diameter of the solid particles in the dexamethasone eye drop suspension formulations were in all cases less than 10 μm with a mean diameter from 2.5 to 5.8 μm. The particle size decreased with increasing amount of P407. Permeation studies through semipermeable membrane and porcine sclera showed that increasing the amount HPγCD could enhance drug transport through the membrane barriers and this was related to enhanced drug solubility. The permeation rates were, however, decreased compared to formulation containing γCD alone due to larger hydrodynamic diameter of dexamethasone/γCD/HPγCD complex aggregates. All formulations were both chemically stable for at least 8 months at 25°C and 40°C. CONCLUSIONS: Combination of γCD and HPγCD, i.e., formation of dexamethasone/γCD/HPγCD complexes, resulted in synergistic effect. That is the mixture had greater solubilizing effect than the individual CD, resulted in enhanced dissolution and drug delivery through membranes. Furthermore, it is possible to control the drug release rate by adjusting the γCD:HPγCD ratio in the solid dexamethasone/γCD/HPγCD complexes.


This item appears in the following Collection(s)

Show simple item record