Show simple item record

dc.contributor.authorGanesh, Santhi K
dc.contributor.authorJoo, Jungnam
dc.contributor.authorSkelding, Kimberly
dc.contributor.authorMehta, Laxmi
dc.contributor.authorZheng, Gang
dc.contributor.authorO'Neill, Kathleen
dc.contributor.authorBillings, Eric M
dc.contributor.authorHelgadottir, Anna
dc.contributor.authorAndersen, Karl
dc.contributor.authorThorgeirsson, Gudmundur
dc.contributor.authorGudnason, Thorarinn
dc.contributor.authorGeller, Nancy L
dc.contributor.authorSimari, Robert D
dc.contributor.authorHolmes, David R
dc.contributor.authorO'Neill, William W
dc.contributor.authorNabel, Elizabeth G
dc.date.accessioned2011-04-08T15:26:47Z
dc.date.available2011-04-08T15:26:47Z
dc.date.issued2011-02
dc.date.submitted2011-04-08
dc.identifier.citationMed Genomics. 2011, 4:20en
dc.identifier.issn1755-8794
dc.identifier.pmid21356094
dc.identifier.doi10.1186/1755-8794-4-20
dc.identifier.urihttp://hdl.handle.net/2336/127866
dc.descriptionTo access publisher full text version of this article. Please click on the hyperlink in Additional Links fielden
dc.description.abstractBACKGROUND: The vascular disease in-stent restenosis (ISR) is characterized by formation of neointima and adverse inward remodeling of the artery after injury by coronary stent implantation. We hypothesized that the analysis of gene expression in peripheral blood mononuclear cells (PBMCs) would demonstrate differences in transcript expression between individuals who develop ISR and those who do not. METHODS AND RESULTS: We determined and investigated PBMC gene expression of 358 patients undergoing an index procedure to treat in de novo coronary artery lesions with bare metallic stents, using a novel time-varying intercept model to optimally assess the time course of gene expression across a time course of blood samples. Validation analyses were conducted in an independent sample of 97 patients with similar time-course blood sampling and gene expression data. We identified 47 probesets with differential expression, of which 36 were validated upon independent replication testing. The genes identified have varied functions, including some related to cellular growth and metabolism, such as the NAB2 and LAMP genes. CONCLUSIONS: In a study of patients undergoing bare metallic stent implantation, we have identified and replicated differential gene expression in peripheral blood mononuclear cells, studied across a time series of blood samples. The genes identified suggest alterations in cellular growth and metabolism pathways, and these results provide the basis for further specific functional hypothesis generation and testing of the mechanisms of ISR
dc.language.isoenen
dc.publisherBioMed Central Ltden
dc.relation.urlhttp://dx.doi.org/10.1186/1755-8794-4-20en
dc.subject.meshPubMed in processen
dc.subject.meshCoronary Diseaseen
dc.titleTime course analysis of gene expression identifies multiple genes with differential expression in patients with in-stent restenosisen
dc.typeArticleen
dc.contributor.departmentNational Heart, Lung, and Blood Institute (NHLBI), Division of Intramural Research, Bethesda, Maryland, USA. enabel@partners.org.en
dc.identifier.journalBMC medical genomicsen
html.description.abstractBACKGROUND: The vascular disease in-stent restenosis (ISR) is characterized by formation of neointima and adverse inward remodeling of the artery after injury by coronary stent implantation. We hypothesized that the analysis of gene expression in peripheral blood mononuclear cells (PBMCs) would demonstrate differences in transcript expression between individuals who develop ISR and those who do not. METHODS AND RESULTS: We determined and investigated PBMC gene expression of 358 patients undergoing an index procedure to treat in de novo coronary artery lesions with bare metallic stents, using a novel time-varying intercept model to optimally assess the time course of gene expression across a time course of blood samples. Validation analyses were conducted in an independent sample of 97 patients with similar time-course blood sampling and gene expression data. We identified 47 probesets with differential expression, of which 36 were validated upon independent replication testing. The genes identified have varied functions, including some related to cellular growth and metabolism, such as the NAB2 and LAMP genes. CONCLUSIONS: In a study of patients undergoing bare metallic stent implantation, we have identified and replicated differential gene expression in peripheral blood mononuclear cells, studied across a time series of blood samples. The genes identified suggest alterations in cellular growth and metabolism pathways, and these results provide the basis for further specific functional hypothesis generation and testing of the mechanisms of ISR


This item appears in the following Collection(s)

Show simple item record