The distribution of a germline methylation marker suggests a regional mechanism of LINE-1 silencing by the piRNA-PIWI system.
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2012
Metadata
Show full item recordCitation
BMC Genet. 2012, 13:31Abstract
A defense system against transposon activity in the human germline based on PIWI proteins and piRNA has recently been discovered. It represses the activity of LINE-1 elements via DNA methylation by a largely unknown mechanism. Based on the dispersed distribution of clusters of piRNA genes in a strand-specific manner on all human chromosomes, we hypothesized that this system might work preferentially on local and proximal sequences. We tested this hypothesis with a methylation-associated SNP (mSNP) marker which is based on the density of C-T transitions in CpG dinucleotides as a surrogate marker for germline methylation. We found significantly higher density of mSNPs flanking piRNA clusters in the human genome for flank sizes of 1-16 Mb. A dose-response relationship between number of piRNA genes and mSNP density was found for up to 16 Mb of flanking sequences. The chromosomal density of hypermethylated LINE-1 elements had a significant positive correlation with the chromosomal density of piRNA genes (r = 0.41, P = 0.05). Genome windows of 1-16 Mb containing piRNA clusters had significantly more hypermethylated LINE-1 elements than windows not containing piRNA clusters. Finally, the minimum distance to the next piRNA cluster was significantly shorter for hypermethylated LINE-1 compared to normally methylated elements (14.4 Mb vs 16.1 Mb). Our observations support our hypothesis that the piRNA-PIWI system preferentially methylates sequences in close proximity to the piRNA clusters and perhaps physically adjacent sequences on other chromosomes. Furthermore they suggest that this proximity effect extends up to 16 Mb. This could be due to an unknown localization signal, transcription of piRNA genes near the nuclear membrane or the presence of an unknown RNA molecule that spreads across the chromosome and targets the methylation directed by the piRNA-PIWI complex. Our data suggest a region specific molecular mechanism which can be sought experimentally.Description
To access publisher's full text version of this article. Please click on the hyperlink in Additional Links field.Additional Links
http://dx.doi.org710.1186/1471-2156-13-31http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3352111/pdf/1471-2156-13-31.pdf
Rights
Archived with thanks to BMC geneticsae974a485f413a2113503eed53cd6c53
10.1186/1471-2156-13-31
Scopus Count
Collections
Related articles
- A role for Fkbp6 and the chaperone machinery in piRNA amplification and transposon silencing.
- Authors: Xiol J, Cora E, Koglgruber R, Chuma S, Subramanian S, Hosokawa M, Reuter M, Yang Z, Berninger P, Palencia A, Benes V, Penninger J, Sachidanandam R, Pillai RS
- Issue date: 2012 Sep 28
- Concise review: The Piwi-piRNA axis: pivotal beyond transposon silencing.
- Authors: Bamezai S, Rawat VP, Buske C
- Issue date: 2012 Dec
- Miwi catalysis is required for piRNA amplification-independent LINE1 transposon silencing.
- Authors: Reuter M, Berninger P, Chuma S, Shah H, Hosokawa M, Funaya C, Antony C, Sachidanandam R, Pillai RS
- Issue date: 2011 Nov 27
- The endonuclease activity of Mili fuels piRNA amplification that silences LINE1 elements.
- Authors: De Fazio S, Bartonicek N, Di Giacomo M, Abreu-Goodger C, Sankar A, Funaya C, Antony C, Moreira PN, Enright AJ, O'Carroll D
- Issue date: 2011 Oct 23
- MIWI2 and MILI Have Differential Effects on piRNA Biogenesis and DNA Methylation.
- Authors: Manakov SA, Pezic D, Marinov GK, Pastor WA, Sachidanandam R, Aravin AA
- Issue date: 2015 Aug 25