Quantitative intravoxel analysis of microCT-scanned resorbing ceramic biomaterials - Perspectives for computer-aided biomaterial design
Average rating
Cast your vote
You can rate an item by clicking the amount of stars they wish to award to this item.
When enough users have cast their vote on this item, the average rating will also be shown.
Star rating
Your vote was cast
Thank you for your feedback
Thank you for your feedback
Issue Date
2014-12
Metadata
Show full item recordCitation
Journal of Materials Research. 2014;29(23):2757-72Abstract
Driving the field of micro computed tomography toward more quantitative, rather than qualitative, approaches, we here present a new evaluation method, which uses the unique linear relationship between gray values and x-ray attenuation coefficients, together with the energy-dependence of the latter, to identify (i) the average x-ray energy used in the CT device, (ii) the x-ray attenuation coefficients, and (iii), via the x-ray attenuation average rule, the intravoxel composition, i. e., the microporosity, which, amongst others, governs the voxel-specific mechanical properties, such as stiffness and strength. The method is realized for six 3D tricalcium phosphate scaffolds, seeded with pre-osteoblastic cells and differentiated for 3, 6, and 8 weeks, respectively. The corresponding voxel-specific microporosities turn out to increase during the culturing period (resulting in reduced elastic properties, as determined from micromechanical considerations), while the overall macroporosity remains constant. The new methods are expected to further foster the development of a rationally based and computer-aided design of biomaterials and tissue engineering scaffoldsDescription
To access publisher's full text version of this article click on the hyperlink at the bottom of the pageAdditional Links
http://dx.doi.org/ 10.1557/jmr.2014.326Collections