Show simple item record

dc.contributor.authorBlach S, Zeuzem S, Manns M, Altraif I, Duberg AS, Muljono DH, Waked I, Alavian SM, Lee MH, Negro F, Abaalkhail F, Abdou A, Abdulla M, Rached AA, Aho I, Akarca U, Al Ghazzawi I, Al Kaabi S, Al Lawati F, Al Namaani K, Al Serkal Y, Al-Busafi SA, Al-Dabal L, Aleman S, Alghamdi AS, Aljumah AA, Al-Romaihi HE, Andersson MI, Arendt V, Arkkila P, Assiri AM, Baatarkhuu O, Bane A, Ben-Ari Z, Bergin C, Bessone F, Bihl F, Bizri AR, Blachier M, Blasco AJ, Mello CE, Bruggmann P, Brunton CR, Calinas F, Chan HL, Chaudhry A, Cheinquer H, Chen CJ, Chien RN, Choi MS, Christensen PB, Chuang WL, Chulanov V, Cisneros L, Clausen MR, Cramp ME, Craxi A, Croes EA, Dalgard O, Daruich JR, de Ledinghen V, Dore GJ, El-Sayed MH, Ergör G, Esmat G, Estes C, Falconer K, Farag E, Ferraz ML, Ferreira PR, Flisiak R, Frankova S, Gamkrelidze I, Gane E, García-Samaniego J, Khan AG, Gountas I, Goldis A, Gottfredsson M, Grebely J, Gschwantler M, Pessôa MG, Gunter J, Hajarizadeh B, Hajelssedig O, Hamid S, Hamoudi W, Hatzakis A, Himatt SM, Hofer H, Hrstic I, Hui YT, Hunyady B, Idilman R, Jafri W, Jahis R, Janjua NZ, Jarčuška P, Jeruma A, Jonasson JG, Kamel Y, Kao JH, Kaymakoglu S, Kershenobich D, Khamis J, Kim YS, Kondili L, Koutoubi Z, Krajden M, Krarup H, Lai MS, Laleman W, Lao WC, Lavanchy D, Lázaro P, Leleu H, Lesi O, Lesmana LA, Li M, Liakina V, Lim YS, Luksic B, Mahomed A, Maimets M, Makara M, Malu AO, Marinho RT, Marotta P, Mauss S, Memon MS, Correa MC, Mendez-Sanchez N, Merat S, Metwally AM, Mohamed R, Moreno C, Mourad FH, Müllhaupt B, Murphy K, Nde H, Njouom R, Nonkovic D, Norris S, Obekpa S, Oguche S, Olafsson S, Oltman M, Omede O, Omuemu C, Opare-Sem O, Øvrehus AL, Owusu-Ofori S, Oyunsuren TS, Papatheodoridis G, Pasini K, Peltekian KM, Phillips RO, Pimenov N, Poustchi H, Prabdial-Sing N, Qureshi H, Ramji A, Razavi-Shearer D, Razavi-Shearer K, Redae B, Reesink HW, Ridruejo E, Robbins S, Roberts LR, Roberts SK, Rosenberg WM, Roudot-Thoraval F, Ryder SD, Safadi R, Sagalova O, Salupere R, Sanai FM, Avila JF, Saraswat V, Sarmento-Castro R, Sarrazin C, Schmelzer JD, Schréter I, Seguin-Devaux C, Shah SR, Sharara AI, Sharma M, Shevaldin A, Shiha GE, Sievert W, Sonderup M, Souliotis K, Speiciene D, Sperl J, Stärkel P, Stauber RE, Stedman C, Struck D, Su TH, Sypsa V, Tan SS, Tanaka J, Thompson AJ, Tolmane I, Tomasiewicz K, Valantinas J, Van Damme P, van der Meer AJ, van Thiel I, Van Vlierberghe H, Vince A, Vogel W, Wedemeyer H, Weis N, Wong VW, Yaghi C, Yosry A, Yuen MF, Yunihastuti E, Yusuf A, Zuckerman E, Razavi H.
dc.date.accessioned2017-05-26T11:04:30Z
dc.date.available2017-05-26T11:04:30Z
dc.date.issued2017-03
dc.date.submitted2017
dc.identifier.citationGlobal prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study. 2017, 2 (3):161-176 Lancet Gastroenterol Hepatolen
dc.identifier.issn2468-1253
dc.identifier.pmid28404132
dc.identifier.doi10.1016/S2468-1253(16)30181-9
dc.identifier.urihttp://hdl.handle.net/2336/620195
dc.descriptionTo access publisher's full text version of this article click on the hyperlink belowen
dc.description.abstractThe 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of-and expansion on-the 2014 analysis, which reported 80 million (95% CI 64-103) viraemic infections in 2013.
dc.description.abstractWe developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data.
dc.description.abstractModels were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8-1·1) in 2015, corresponding to 71·1 million (62·5-79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively).
dc.description.abstractThe global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections.
dc.description.sponsorshipJohn C Martin Foundation.en
dc.language.isoenen
dc.publisherElsevieren
dc.relation.urlhttp://www.sciencedirect.com/science/article/pii/S2468125316301819
dc.rightsArchived with thanks to The lancet. Gastroenterology & hepatologyen
dc.subjectLifrarbólga Cen
dc.subjectSóttvarniren
dc.subjectTMD12en
dc.subjectGAS12en
dc.subject.meshHepacivirusen
dc.subject.meshHepatitisen
dc.subject.meshGlobal Healthen
dc.titleGlobal prevalence and genotype distribution of hepatitis C virus infection in 2015: a modelling study.en
dc.typeArticleen
dc.identifier.journalThe lancet. Gastroenterology & hepatologyen
dc.rights.accessClosed - Lokaðen
html.description.abstractThe 69th World Health Assembly approved the Global Health Sector Strategy to eliminate hepatitis C virus (HCV) infection by 2030, which can become a reality with the recent launch of direct acting antiviral therapies. Reliable disease burden estimates are required for national strategies. This analysis estimates the global prevalence of viraemic HCV at the end of 2015, an update of-and expansion on-the 2014 analysis, which reported 80 million (95% CI 64-103) viraemic infections in 2013.
html.description.abstractWe developed country-level disease burden models following a systematic review of HCV prevalence (number of studies, n=6754) and genotype (n=11 342) studies published after 2013. A Delphi process was used to gain country expert consensus and validate inputs. Published estimates alone were used for countries where expert panel meetings could not be scheduled. Global prevalence was estimated using regional averages for countries without data.
html.description.abstractModels were built for 100 countries, 59 of which were approved by country experts, with the remaining 41 estimated using published data alone. The remaining countries had insufficient data to create a model. The global prevalence of viraemic HCV is estimated to be 1·0% (95% uncertainty interval 0·8-1·1) in 2015, corresponding to 71·1 million (62·5-79·4) viraemic infections. Genotypes 1 and 3 were the most common cause of infections (44% and 25%, respectively).
html.description.abstractThe global estimate of viraemic infections is lower than previous estimates, largely due to more recent (lower) prevalence estimates in Africa. Additionally, increased mortality due to liver-related causes and an ageing population may have contributed to a reduction in infections.


Files in this item

Thumbnail
Name:
Publisher version

This item appears in the following Collection(s)

Show simple item record